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SUMMARY

Polydimethylsiloxane (PDMS) networks have been formed

by endlinking linear PDMS molecules. When a second layer is

cast on top of a fully-gelled lower layer, the new molecules

diffuse into the surface of the lower layer and form molecular

loops ("entanglements") in the course of endlinking with them-

*" selves. The two layers are then joined only by these macro-

molecular loops. Measurements have been made of the work required

to separate such layers under threshold conditions, i.e., at low

rates, high temperatures, and, in some cases, in the swollen

state. Values of the work of detachment have been found to be

*.[ 15-25 J/m 2 , generally about one-half of the work of fracture of

,.' the layers themselves, and consistent with the inferred density

of interlinking molecular loops at the interface. The values

were higher for higher densities, roughly in proportion, and for

interlinking molecular strands of higher molecular weight, in

accordance with the theory of Lake and Thomas. In the absence

of interlinking the work of detachment was extremely small, only

about 70 mJ/m 2 .

INTRODUCTION

Measurements are reported here of the mechanical strength

of molecular networks formed by the physical entanglement of

elastomeric macromolecules. Previous studies have focussed on

networks formed by interlinking macromolecules by covalent

bonds (1-3). Such networks are relatively strong even under

V
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threshold conditions, when dissipative processes are minimized.

The work Gc of fracture per unit area torn through is then about

30-100 J/m 2 , large in comparison with the theoretical value for

a plane of C-C covalent bonds, about 1 J/m 2. This difference

has been attributed by Lake and Thomas to the polymeric nature

of the molecular strands comprising the network: many bonds must

be stressed in order to break any strand (4). They concluded

that the work of fracture is given by

G = KM ()
c c

where Mc is the molecular weight of a network strand and

K is a constant involving the density of the polymer, the effec-

tive mass, length and flexibility of a single main-chain bond,

and the bond dissociation energy.

In Part I (5), two sheets of a crosslinked elastomer were

placed in contact and joined by covalent chemical bonds. The

work G of detachment under threshold conditions was found toa

increase in proportion to the density of interfacial bonds, from

the low value characteristic of only Van der Waals' attractions

up to the work Gc of fracture of the sheets themselves. Again,

for a given density of interfacial interlinking the detachment

work Ga was found to be greater when the network and interlink-

*i ing strands were longer, in accordance with the concept of Lake

and Thomas (5,6).

We now address the question: suppose two elastomeric

sheets are connected together by molecules which loop around

others in the opposite surface, forming permanent molecular

- . .. - -. .'..-.-. i. - . . .. . .
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"entanglements", but are not connected directly by interlinking

bonds, will the strength of adhesion be substantially different

from the covalently-bonded case? The answer will be important

for any quantitative treatment of the relationship between

network structure and threshold strength.

The method employed for preparing pairs of elastomeric

sheets joined only by "entanglements" was as follows. A layer

of end-linkable polydimethylsiloxane (PDMS) linear polymer was

poured as a flat sheet and then subjected to an end-linking

-" (gelation) reaction using a tetrafunctional silane linking

reagent (3,7). On top of the elastomeric PDMS sheet prepared

in this way a second layer of PDMS polymer was poured and gelled

in situ. Because the first layer was completely reacted, the

second layer was unable to link with it directly. But, because

of the relatively rapid interdiffusion of PDMS molecules (8),

there will be a substantial penetration of the first layer by

*" molecules of the second while they are in the process of end-

linking to form the second elastomeric layer. Thus, the two

layers will be joined by a permanent molecular entanglement

wherever a molecule of the second layer loops around one of the

first layer before end-linking is complete, Figure 1.

Values of the detachment work Ga per unit area of interface

have been determined for sheets interlinked in this way. They

are reported here for specimens prepared using PDMS of three

different molecular weights, and they are compared with corre-

sponding values for unentangled sheets, held together only by

Van der Waals attractions.

....
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EXPERIMENTAL DETAILS

(i) Preparation of polydimethylsiloxane (PDMS) networks

Networks were prepared as described elsewhere (3) from

linear polydimethylsiloxanes having vinyl end groups. A tetra-

functional silane linking agent, tetrakisdimethylsiloxysilane,

kindly supplied by Prof. C. W. Macosko, was mixed with the

divinyl polymer, together with about 5 ppm of a Pt catalyst (9).

The mixture was then degassed and cast as a thin sheet, about

1 mm thick, on a Teflon surface. Complete reaction, judged by

the attainment of minimum swelling of the resultant gel in ben-

zene, was achieved after 3 days at 700 C. Test sheets were there-

fore prepared by heating for 4 days at 700 C to ensure complete

reaction.

Polymers having three different molecular weight (Mn =n
11,500, 22,500 and 36,000 g/g-mole) were used for preparing net-

works. GPC data gave values for the ratio M w/Mn of each polymer

of approximately 2.0.

(ii) Preparation of interlinked layers

Samples were made by first casting one layer of endlinked

PDMS, as described above, and then casting a second layer on

top of it. In some cases the upper surface of the first layer

was treated with 1-nonene and a small amount of a Pt catalyst

(5 ppm) to saturate any residual SiH groups in the surface and

thus prevent any possible chemical linking between the two layers.

The top layer was then cast on in the usual way. No difference

*SS S
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was observed in the strength of adhesion for treated and un-

treated samples. It was concluded that no chemical linking

occurred when the first layer was cured for 4 days at 70*C

before the second layer was applied.

(iii) Measurement of the threshold work Ga of detachment

Measurements were made of the peel force required to
separate two adhering layers, Figure 2. Samples were pre-swollen

witl m-xylene or silicone oil in some instances and immersed in

a water bath at temperatures between 701C and 90*C. The water

effectively prevented evaporation of the swelling liquid. Only

"symmetrical" samples were tested in the swollen state. "Sym-

metrical" samples are those in which both layers were made from

PDMS of the same molecular weight, so that the crosslink density

was the same and the degree of swelling would be equal. Values

of the work Ga of detachment were then calculated from the mea-
Ja

sured peel force P per unit width:

Ga = 2X2 p (2)

where Xs is the linear swelling ratio. The term Xs in

equation 2 accounts for the reduced number of network strands

crossing the interface in a swollen speciment. For unswollen

specimens, X = 1.s

Peeling was carried out in all cases at a rate of about

8 1m/s.

In order to study the strength of adhesion due to dispersion

forces alone, thin sheets about 0.8 mm thick were cast and placed

in contact with each other after cure. The upper surfaces of

de V
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cast sheets were smooth and shiny, and were brought into con-

tact for these experiments. No difference was found in the

measured peel force after 15 min and 24 h of contact. There-

fore, 15 min was adopted as a standard contact time. Peeling

separation was then carried out at room temperature at a rate

of about 8 vim/S.

One pair of sheets was extracted with benzene at room

temperature in an attempt to remove low-molecular-weight PDMS,

inherent in PDMS materials. These samples gave the same (low)

values of Ga as unextracted ones, 60-100 mJ/m 2 (Table 1). It

is concluded that the strength of self-adhesion of PDMS materials

under threshold conditions is extremely low, much lower than that

observed previously for hydrocarbon elastomers, about 1 J/m
2

(5, 10). Possible reasons for this are discussed later.

RESULTS AND DISCUSSION

Values of Ga were measured for symmetrical interlinked

specimens, both swollen and unswollen. They are given in

Table 2. They were found to be in good agreement, when the

factor 2 was employed to correct for changes in the interlink-
5

ing density, and independent of the swelling liquid used. This

agreement shows that threshold conditions had, indeed, been

attained at the low rate of peel, 8 vm/s, and high temperatures,

70-90°C, used for these experiments.

Values of Ga for all of the interlinked samples are given
a
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the molecular weights of the PDMS liquids used in preparing

the top and bottom layers. When these molecular weights were

both low, then the strength of adhesion was relatively low, and

when they were higher, then the strength of adhesion was rel-

atively high. This trend is consistent with previous results

for the strength of adhesion of elastomer layers to each other

(5) and to glass (10) and for their cohesive strengths also

(2, 3, 6). In all cases, the work of fracture was greater when

the network strands were longer, as predicted by Lake and

Thomas (4). For the present materials, the network strand mol-

ecular weight is given by the molecular weight of the precursor

polymer, to a first approximation.

In one case the upper layer could not be detached cleanly.

It tore apart, requiring the input work Gc of cohesive rupture,

instead of detaching. Molecules of the second layer had appar-

ently penetrated the first layer to such an extent in this case

that the interface was no longer the weakest plane. In all

other cases, however, the work G of detachment was considerablya

smaller than the work G of cohesive rupture of either of the
c

two adhering layers. Values of Gd , taken from reference 3, are

given in parentheses in Table 3, for comparison.

It is assumed that polymer molecules of the upper layer

diffuse rapidly into the already-gelled lower layer and reach

an equilibrium concentration in the surface regions quickly,

before they undergo a significant amount of end-linking and

gelation. Measurements of the equilibrium uptake of PDMS

..
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liquids by PDMS gels have been reported previously (8). The

results are given in Table 4 for the systems studied here.

They range from 11 to 57 per cent uptake of the liquid by unit

volume of the gel.

On comparing Tables 3 and 4, a general correlation is

evident between the threshold work Ga of detachment and the

amount of PDMS liquid taken up at equilibrium, for each liquid.

In Figure 3, values of G are plotted against th olume uptakea

C. They are seen to be described reasonably we: by linear

relations for each PDMS liquid forming the uppe aver on later

gelation. Thus, it appears that the strength of -ahesion of the

upper layer is approximately proportional to the amount of the

precursor liquid absorbed by the lower layer, and hence to the

number of interlinking strands. Moreover, the slopes of the

linear relations shown in Figure 4 between Ga and c; i.e., 60,

90 and 135 j/m2; are approximately in proportion to values of

Mn for the PDMS liquid in the upper layer, which are in the

ratio 65:90:115. Thus, the lengths of the interlinking strands

also determine the strength of adhesion, in good quantitative

agreement with the Lake-Thomas theory.

The horizontal broken lines in Figure 4 denote the work

Gc of cohesive rupture for each upper layer. By extrapolation

in two cases, and by direct observation in the third, it is con-

cluded that when the density of interlinking strands exceeds

35-50 per cent of those present in the lower layer then clean

separation at the interface is no longer the clearly-preferred

°-t
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mode of fracture. At this stage, the total density of chains

crossing the interfacial plane will be about twice as large,

70-100 per cent, assuming that each pair of strands from the

upper layer interlink successfully with a network mesh in the

lower layer, so that the number of interlinking strands approaches

that for a randomly-chosen plane within the upper or lower layer.

It is not surprising, therefore, that cohesive rupture replaces

interfacial separation at this point.

Finally, reference should be made to the extraordinarily

low values obtained for adhesion between non-interlinked sheets,

Table 1, in comparison with those obtained previously for the

adhesion of sheets of hydrocarbon elastomers, about 1 J/m2 (5).

The present results are much closer to theoretical values for the

maximum work of detachment due to Van der Waals' attractions

alone, given by 2S where S is the surface energy of the elastomer

-.- layer. Thus, G is expected to fall in the range 40-80 mJm2 on
a

this basis, in good agreement with the present values for PDMS

- sheets.

However, it was found previously that other elastomeric

materials adhere together much more strongly, and this was

attributed to a generalization of the mechanism proposed by Lake

and Thomas to account for their higher cohesive strength: that

many bonds in a network strand must be stressed in order to

break any one of them (5, 10). In the case of autohesion, the

bond to be broken is the weak Van der Waals association at the

interface, but the principle should still hold that the same

...................
t.a.< tArt . A A %<. u.* , , .~
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energy must be imparted to every bond in the molecular chain

leading from the interface to the network itself, in order to

break the association.

The question is, therefore: Are the present results

representative of elastomeric materials in general, with the

previous results for hydrocarbon elastomers anomalously high?

Or, are the previous results representative of elastomeric

materials in general, and the present results for PDMS layers

anomalously low?

Extraction of PDMS sheets with benzene did not raise the

level of adhesion significantly. Thus, there does not appear

to be a liquid-like layer on the surface, responsible for low

self-adhesion. On the other hand, it is extremely difficult to

remove low-molecular-weight silicone fluids completely. The

question raised above must therefore be considered unresolved,

at present. It merits further study, in view of the large dif-

ferences, by a factor of 10-20, between the two systems, and the

theoretical and practical importance of the self-adhesion of

elastomeric materials.

CONCLUSIONS

The main conclusion is that permanently "entangled"

macromolecular loops appear to have about the same strength

as covalently-bonded macromolecules of the same length. A

second conclusion is that the work of rupture across a plane

of such entanglements is roughly proportional to the inferred
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density of entanglement interlinking. And, finally, the

greater the molecular weight of the molecular strands comprising

the loops, the greater appears to be the work of rupture, in

accord with the theoretical treatment of Lake and Thomas for

the cohesive strength of an elastomeric network. These con-

clusions have clear implications for the strength of molecular

networks containing trapped entanglements.
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Table 1. Work G (mJ/m2 ) of detachment for
a

fully-cured PDMS layers, placed in contact

" Molecular weight M of PDMS in
n

upper layer

11,500 22,500 36,000

M 11,500 66 ± 3 60 ± 4 81 ± 2

in 22,500 60 ± 4 80 ± 3 84 ± 2

lower 36,000 81 ± 2 84 ± 2 97 ± 4

layer

7--
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Table 2. Threshold work G of detachment fora

unswollen and swollen interlinked PDMS layers

Molecular weight M of PDMS in both layers
n

11,500 22,500 36,000

Unswollen

Ga (J/m2 ) 14.5±0.8 19.5±1.5 24.9±1.4

Swollen in m-xylene

x 1.51 1.57 1.67

2P(N/m) 7.4±0.7 8.3±0.5 9.5±0.5

G (J/m 2 )* 16.8±1.4 20.5±1.2 26.4±1.2
a

Swollen in silicone oil

Xs 1.19 1.24 1.30

2P(N/m) 10.5±1.3 12.7±0.9 14.7±0.8

G(j/m2)* 14.7±1.7 19.6±1.4 24.8±1.3a

• G =2X2 p
a s

4. .

-5=

I
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Table 3. Threshold work G (J/m2 ) of detachment for

interlinked PDMS layers and threshold fracture

energy Gc (J/m2), in parentheses, for the

layers themselves

Molecular weight M of PDMS in upper layer

11, 500 22,500 36,000
nn

Mn  11,500 15.5±0.4 17.1±+0.4 18.9±+0.5
fl- (35)

in 22,500 17.5±0.7 20.1±0.4 22.7±0.5

lower (44)

layer 36,000 (cohesive 24.6±0.6 25.6±0.4
rupture) (48)

-a'

-.4"
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Table 4. Volume of PDMS liquid taken up at equilibrium

by unit volume of PDMS gels (taken from

reference 8).

Molecular weight M of PDMS liquid

n

11,500 22,500 36,000

M of 11,500 0.271 0.149 0.109
n

PDMS 22,500 0.375 0.220 0.162

gel 36,000 0.572 0.283 0.211

5,
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Figure 2. Method employed for measuring the work G
of detachment. Ga = 2P, where P is a

the peel force per unit width.
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Figure 3. Relations between the work G of detachment of

a PDMS layer and the concentration c of PDMS

molecules absorbed by the lower layer before

the upper layer was gelled. The horizontal

broken lines denote the work G of fracture

" of the upper layer, after gelation. Molecular

weight of PDMS used for the upper layer:

11,500, o; 22,500, A; 36,000,8D
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